
Journal of Computational Physics 177, 284–312 (2002)

doi:10.1006/jcph.2002.7011, available online at http://www.idealibrary.com on

Optimization of the Crystal Surface
Temperature Distribution in the Single-Crystal

Growth Process by the Czochralski Method

Ja Hoon Jeong and In Seok Kang1

Department of Chemical Engineering and Division of Mechanical Engineering, Pohang University
of Science and Technology, San 31, Hyoja Dong, Pohang, 790-784, South Korea

E-mail: iskang@postech.ac.kr

Received February 22, 2001; revised January 25, 2002

The optimization of the crystal surface temperature distribution is performed for
single-crystal growth in the Czochralski process. In the optimization problem, we
seek an optimal solution in the sense that the index of crystalline defects is minimized
while the single-crystal growth rate is maximized. In the objective function, the von
Mises stress is considered a driving force that induces crystalline defects. In order to
solve the optimization problem with the equality constraints given by the governing
partial differential equations, the variational method is used. Based on the calculus
of variations and the method of Lagrange multiplier, the Euler–Lagrange equations
are derived in the form of coupled partial differential equations. They are solved by
using the finite-difference method and the iterative numerical scheme proposed in
this work. In order to handle inequality constraints, the penalty function method is
applied. The optimal distributions of the crystal surface temperature obtained in this
work may provide an insight into the optimal design of thermal surroundings, such as
thermal shield configurations and heater/cooler positions. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In the Czochralski (CZ) process, the quality of single crystals is determined by crystalline
defects. Recently, an attempt was made to analyze the crystalline defects by using a thermal
stress model and point defects model. Tsukada et al. [1] reported their numerical and
experimental studies on crack formation in a LiNbO3 single crystal by using the von Mises
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stress criterion. By comparing their numerical simulations with experimental observations,
they proposed that the crack formation might occur when the thermal stress at the crystal
surface exceeds a certain value or when the region with relatively large thermal stress extends
inside the crystal. On the other hand, it has been believed that the relative supersaturation
of point defects is a driving force to induce microdefects in crystalline silicon. Sinno et al.
[2] presented their point defects model to describe the appearance of the oxidation-induced
stacking-fault (OSF) ring formation created during the cooling of silicon crystals in the
CZ process. They reported that the predictions of the OSF ring based on the point defects
model are in excellent agreement with the empirical correlation determined from their
experiments.

Because crystalline defects are strongly influenced by the crystal thermal history, the opti-
mal distribution of the crystal temperature is the most important key in single-crystal growth
by the CZ method. Many efforts have been made to suggest proper operating conditions
for high-quality single-crystal growth. Bornberger and Ammon [3] reported the results of
their experimental investigations into the dependence of the OSF ring in CZ-grown silicon
crystals on operating conditions, where they used different heat shields. Bornside et al. [4]
applied their integrated numerical analysis model as a design tool to find the optimum pro-
cessing conditions and system configurations for the dislocation-free silicon single-crystal
growth by the CZ method. They used the von Mises stress as the measure of thermal stress.
By comparing the stress profiles obtained by numerical computations case by case, they sug-
gested several design modifications to the CZ system, such as the positions of the auxiliary
heater or cold sink and the geometrical configurations of the heat shield.

The purpose of this work is to propose a systematic way for optimization of crystal
temperature distribution in single-crystal growth by the CZ method. In this work, the op-
timization problem is formulated as an inverse problem, where the policy is given rather
than the system itself. In the problem, we seek an optimal solution in the sense that the
index of crystalline defect is minimized while the single-crystal growth rate is maximized.
In the objective function, the von Mises stress is considered the driving force that in-
duces crystalline defects. In order to solve the optimization problem with the equality
constraints given by the governing equations, the variational method is used. Based on
the calculus of variations and the method of Lagrange multiplier, we derive an optimal-
ity system of equations, the so-called Euler–Lagrange equations in the form of coupled
partial differential equations (PDEs). In order to handle the inequality constraints, the
penalty function method is applied with the unit Heaviside step function and a penalty
parameter.

The optimal distributions of the crystal surface temperature obtained from this work
may provide an insight and fundamental information into the optimal design of thermal
surroundings, such as thermal shield configurations and heater/cooler positions. The varia-
tional methods in this work can be extended to more complicated problems relevant to the
CZ process, such as the point defect problem. In the point defect problem, the complicated
state equations add some extra complexity. The rigorous computations of the point defect
problem needed for consideration of the relative supersaturation of self-interstitials and
vacancies will be presented in a forthcoming work by the authors.

From the mathematical viewpoint, the optimization problem in this work is an optimal
boundary control problem for a distributed parameter system, described by partial differen-
tial equations. The optimization and control of distributed parameter systems has attracted
much attention of researchers in applied mathematics and engineering. For studies in the
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area, the calculus of variations plays the most important role as a general technique for
optimization in function spaces. For the theoretical results, readers may consult excellent
references, such as [5, 6]. Recent advancement in computing power has also made it pos-
sible to solve optimal control problems of practical importance, such as the optimal fluid
flow control.

Since variational calculus is familiar in the finite-element analysis, most of the optimal
flow control problems have been analyzed by using the finite-element methods. He et al. [7]
performed drag optimization for flow past a circular cylinder by using oscillatory cylinder
rotation, where the state equations are the time-dependent Navier–Stokes equations and the
quadratic objective function involves the vorticity and a regularization term. They discretized
the state equations using the finite-element approximation and applied a quasi-Newton
method to the discrete control problem. They reported that their results agree closely with
the quasi-optimal forcing conditions determined by parametric search. In similar ways,
Berggren [8] solved the vorticity minimization problem where the flow is controlled by
suction and blowing on a part of the boundary. Also, Ghattas and Bark [9] solved the optimal
control problem, where steady incompressible flows are controlled by suction or injection
of fluid onto portions of the boundary in order to minimize the energy dissipation. To reduce
the computation time, they developed reduced Hessian sequential quadratic programming
methods, which are compared with other methods.

It is noteworthy that the objective functions are usually given in terms of the control
variable or its derivatives. It is because the boundary velocity of the flow is used as a means
to control the flow itself for the minimization of drag force, vorticity, and dissipation energy
[7–9]. On the other hand, Hou and Ravindran [10] developed a systematic way to solve
an optimal control problem, where an electrically conducting fluid is controlled by using
electromagnetic force. They used the electric current at the boundary as the control variable
to match a desired velocity field, or to minimize the vorticity in the flow domain. However,
even in this case, the objective function still includes the terms of the control variable or its
derivatives because the use of the control variable, namely the normal electric current on
the boundary, is minimized simultaneously. Surprisingly enough, there have been only few
attempts to discuss the case in which the objective function does not include the control
variable or its derivatives. One of the reasons comes from the fact that in most optimal
control problems, the objective function mainly consists of two performance indices. One
is about the difference between the current state and the ideal or desired state, and the
other is about the magnitude of the control efforts. Both of them should be simultaneously
minimized; then the optimal state would be determined by a competition between the two
indices.

In some situations, however, we encounter optimization problems where the control
variables or their derivatives are not included in the objective functions. The problem of
temperature control to minimize thermal stress in this work provides a typical example. In
such problems, as is shown later, the boundary conditions of the state and adjoint variables
at the control surface exhibit quite unique features and require special treatment in the
numerical implementation. Especially that is the case when the problem is to be solved by
an iterative numerical scheme. In the present work, we derive an auxiliary condition for
the crystal surface temperature. Then we solve the system of equations of the state and
adjoint variables using the finite-difference scheme with the proposed iterative numerical
scheme.
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2. PROBLEM STATEMENT

2.1. The Objective Function Formulation

The generation and motion of dislocation in crystals grown by the CZ method closely
correlate with the thermoelastic stresses in the growing crystal. Although the process of
generation and multiplication of the dislocations is far from being fully understood yet,
Jordan et al. [11] critically reviewed and extended previous works. They explained the
dislocation formation by using the concept of resolved shear stress and critical resolved
shear stress, below which no dislocation generation was assumed to occur. Maroudas and
Brown [12] have used the Haasen model [13] to analyze dislocation dynamics in silicon
and III–V growth. According to the Haasen model, the von Mises stress, which scales
the magnitude of the deviatoric portion of thermal stress, supplies the driving force for
dislocation.

In our optimization problem, we seek an optimal solution in the sense that the index
of crystalline defect is minimized while the single-crystal growth rate is maximized. In
the objective function, the von Mises stress is considered the driving force that induces
crystalline defects. The radial uniformity of the temperature distribution in the crystal
phase is also considered because the produced wafer should have uniform thermal history
to keep the constant mechanical and electrical properties. The single-crystal growth rate
is determined by the energy balance at the crystal–melt interface. That is, the difference
between the heat flux from the interface at the crystal side and the heat flux to the interface
at the melt side determines the local rate of solidification. When the heat flux from the melt
phase is kept constant, the crystal growth rate is proportional to the heat transfer rate toward
the crystal phase minus the constant flux from the melt.

Mathematically, the optimization problem is described by

Min. I (u) = αu

∫
�

Fu(u) d� + αS

∫
�

FS(S) d� − αG G(u), (1)

where u denotes the dimensionless temperature in the crystal phase, S the dimensionless
stress tensor, and αu , αS, and αG the positive weighting parameters corresponding to the
performance measures of Fu , FS, and G to represent the radial uniformity of the temperature
distribution, the magnitude of the von Mises stress, and the single-crystal growth rate,
respectively. For simplicity, the crystal is assumed to be a straight cylinder, as shown in
Fig. 1, where the system domain is denoted by �. The boundaries �1, �2, �3, and �4 are
defined by

�1 : z = 0, 0 ≤ r ≤ 1, �2 : r = 1, 0 < z < l,

�3 : z = l, 0 ≤ r ≤ 1, �4 : r = 0, 0 < z < l,

where l means the dimensionless aspect ratio of the crystal region. Thus we have

Fu =
(

∂u

∂r

)2

, FS = (τvM)2, G =
∫

�1

(n · ∇u) d�, (2)

where n denotes the outgoing unit normal vector. The scalar value of the von Mises
stress, τvM , is defined as the second invariant of the deviatoric part of the stress tensor, S.
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FIG. 1. Schematic diagram for the optimization of the crystal surface temperature distribution in single-crystal
growth by the CZ method.

That is,

τvM =
√

1

2
Sd : Sd , Sd ≡ S − 1

3
(S : E)E, (3)

where E denotes the identity tensor.
It is noteworthy that the control variable u appears explicitly in the objective function

when αu has a positive value. However, when αu is null, the objective function is given by
the domain integration of another variable of S only. This case is discussed later from the
viewpoint of numerical implementation.

2.2. Governing Equations in the Thermal Stress Problem

From the viewpoint of optimization, governing equations play the roles of equality con-
straints. The stress distributions are determined by Hooke’s law and the force balance
equations for a body in static equilibrium [14]. Their dimensionless forms are given by

D = 1

2
((∇v) + (∇v)T ), (4)

S = 1

(1 + ν)
D + ν

(1 + ν)(1 − 2ν)
(D : E)E − β

(1 − 2ν)
(u − 1)E, (5)

∇ · S = 0, (6)

where v represents the displacement vector, D the strain tensor, ν the Poisson ratio, and β

the dimensionless thermal expansion coefficient. When the data given in the literature [4]
are used, we have ν = 0.25 and β = 0.01 in the silicon single-crystal growth. We define
the dimensionless temperature as u = (T − Tam)/(Tm − Tam), where Tm and Tam denote
the melting temperature and the ambient temperature around the crystal, respectively. It is
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assumed that the magnitude of dimensionless displacement caused by the stress is much less
than unity, so that their effects on the system geometry can be neglected. The gravitational
force is also neglected in the calculation of the stress field. We have the traction-free
conditions for all boundaries since the top and bottom plates and the side of the crystal
phase are free. That is,

n · S = 0 on �1, �2, �3. (7)

On the other hand, the dimensional governing equation for the temperature field in the
crystal is given by

∂TS

∂ t̃
+ ũS · ∇̃TS = αS∇̃2TS,

where ũS consists of the translational velocity (pulling rate) and the rotational velocity
and αS is the thermal diffusivity. By using the fact that the convective heat transfer due
to the pulling is very small in comparison with the conductive heat transfer and that the
temperature profile is axisymmetric, we can obtain the simplified governing equation for
the quasi-steady state in the form of Laplace equation. That is,

∇2u = 0, (8)

which has the boundary conditions of

u = 1 on �1, u = 0 on �2. (9)

On the other hand, u is not specified along �3. As is shown later, the appropriate condition
of u along �3 is obtained from the optimality condition.

3. CALCULUS OF VARIATIONS

The calculus of variations provides a necessary condition as an optimality system of
equations. The method of Lagrange multipliers essentially gives a set of conditions necessary
to find the optimal solution of equality-constrained optimization problems. This is done by
converting the constrained problem to an equivalent unconstrained problem with the help
of certain unspecified parameters called Lagrange multipliers. In this section, the calculus
of variations and the method of Lagrange multipliers are briefly reviewed as preliminaries.

For concise but general discussion, we use the operator expressions and we adopt also
the general notations rather than the notations for specific variables. In this section, u is
for the state variable that is to be controlled at the boundary and s is for other state variable
in the system. We consider the optimization problem given by

Min. I (u) = αu

∫
�

Fu(u) d� + αs

∫
�

Fs(s) d�, (10)

subject to

L(u) = 0, (11)

M(s) + N (u) = 0, (12)
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where αu , αs are the positive weighting parameters and L , M , N are partial differential
operators. The system domain � is bounded by �e and �n . They are called the essential
boundary and the natural boundary, respectively, since the state variable u is specified on �e

but free on �n . On the other hand, the other state variable, s, is specified at every boundary
and its distribution in the domain is influenced by u via (12). If we find the condition of u on
�n , the system becomes deterministic and can be solved. Therefore, the important thing is
to find the distribution of u on �n to minimize the given objective function. For the specific
problem considered in this study, u corresponds to the dimensionless temperature u and s
to the stress-related variable, such as the von Mises stress.

By using the method of Lagrange multipliers, we introduce the augmented objective
function, given by

Ia = I + Iu + Is, (13)

where

Iu = 〈û, L(u)〉, Is = 〈ŝ, M(s) + N (u)〉. (14)

Here we define the inner product as 〈u, v〉 = ∫
�

uv d� for arbitrary scalar functions of u and
v. Lagrange multipliers of û and ŝ, called the adjoint variables, have spatial distributions.
As can be seen in (13), the augmented objective function, Ia , has three contributions: one
corresponds to the original objective function and the others are related to the equality
constraints in the optimization problem. By taking the variation to both sides of (13), we
have the optimality condition, given by

δ Ia = δ I + δ Iu + δ Is = 0. (15)

First, let us consider δ I . Since the system boundary is fixed, we have

δ I = αu

∫
�

δFu d� + αs

∫
�

δFs d�. (16)

We suppose that

Fu = Fu(u, u1, u2), Fs = Fs(s), (17)

where u1 and u2 are the derivatives of the unknown function u, defined by

u1 = ∇u, u2 = ∇∇u. (18)

By using the chain rule, we have

δFu = ∂ Fu

∂u
δu + ∂ Fu

∂u1
· δu1 + ∂ Fu

∂u2
: δu2, δFs = ∂ Fs

∂s
δs.

Thus, from the divergence theorem, we have

δ I = αu

〈
δu,

∂ Fu

∂u
− ∇ · ∂ Fu

∂u1
+ ∇∇ :

∂ Fu

∂u2

〉
+ αs

〈
δs,

∂ Fs

∂s

〉
+ δBn, (19)
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where

δBn =
∫

�

n ·
[(

∂ Fu

∂u1
− ∇ · ∂ Fu

∂u2

)
δu + ∂ Fu

∂u2
· δu1

]
d�. (20)

In order to derive (19) and (20), the following vector identity is used:

F : ∇∇u = u∇∇ : F + ∇ · (F · ∇u) − ∇ · ((∇ · F)u).

Now we consider Iu and Is , which are related to the equality constraints. Since the
differential operators L , M , N are commonly given in the form of the second-order PDEs,
we can derive δ Iu and δ Is by introducing F̃u = ûL(u) and F̃ s = ŝ(M(u) + N (s)) in the
above formula. But in the special case when the operators are linear, it is easy to derive the
adjoint operator. That is,

δ Iu = 〈δû, L(u)〉 + 〈δu, L∗(û)〉 + JL(δu, û), (21)

where L∗ is called the adjoint operator and JL is the conjunct corresponding to the differential
operator L , defined by

〈L(u), v〉 = 〈u, L∗(v)〉 + JL(u, v). (22)

In the same way, we have

δ Is = 〈δŝ, M(s) + N (u)〉 + 〈δs, M∗(ŝ)〉 + 〈δu, N ∗(ŝ)〉+ JM(δs, ŝ) + JN (δu, ŝ). (23)

Therefore, from (15), (19), (21), and (23), we have

δ Ia =
〈

δu, L∗(û) + N ∗(ŝ) + αu

(
∂ Fu

∂u
− ∇ · ∂ Fu

∂u1
+ ∇∇ :

∂ Fu

∂u2

)〉

+
〈

δs, M∗(ŝ) + αs

(
∂ Fs

∂s

)〉
+ 〈δû, L(u)〉 + 〈δŝ, M(s) + N (u)〉 (24)

+ δBn + JL(δu, û) + JM(δs, ŝ) + JN (δu, ŝ).

From the optimality condition that δ Ia = 0 for arbitrary δu, δs, δû, δŝ, we obtain Euler–
Lagrange equations, given by

L(u) = 0, (25)

M(s) + N (u) = 0, (26)

L∗(û) + N ∗(ŝ) = αu

(
− ∂ Fu

∂u
+ ∇ · ∂ Fu

∂u1
− ∇∇ :

∂ Fu

∂u2

)
, (27)

M∗(ŝ) = −αs

(
∂ Fs

∂s

)
. (28)

As seen above, the state equations (25) and (26) are recovered by taking the variations to
Ia with respect to û and ŝ. The adjoint equations of (27) and (28) are obtained by taking
the variations to Ia with respect to u and s. We can see also that the state equations and the
adjoint equations are coupled via the derivatives of the integrands in the objective function.
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On the other hand, by recalling the fact that the variations of the boundary values are
given by δu = 0 on �e and δu = 0 on �n , we have the natural boundary condition, given
by

δBn(F1, F2, δu) + JL(δu, û) + JM(δs, ŝ) + JN (δu, ŝ) = 0. (29)

The natural boundary condition provides the key equation for u on �n , where u is not spec-
ified in the problem. The detailed procedures for obtaining the natural boundary condition
become clear in the next section, where each operator is specified.

Generally, the optimization problem has the state constraints in the form of u ∈ U , which
can be mathematically handled by projection methods. In most engineering optimization
problems, the state constraints can be simplified to inequality constraints. For example,
consider

u ≥ 0, in �. (30)

In this work, we apply the penalty function method and thus the augmented objective
function in (13) is modified to

Ia = I + Iu + Is + IR, (31)

where

IR = R
∫

�

u2 H(−u) d�. (32)

Here, the unit Heaviside step function of H(−u) is defined by

H(−u) =
{

1, if u < 0
0, if u ≥ 0.

(33)

The penalty parameter of R has a large positive value. The limiting case where R has
infinitely large value corresponds to the exact consideration of the inequality constraint, but
this method is based on the assumption that R with a sufficiently large value is available.
By taking the variation of IR , we have

δ IR = R
∫

�

δ(u2 H(−u)) d�. (34)

It is noteworthy that H(−u) is discontinuous at u = 0, but that u2 H(−u) is not only con-
tinuous, it is also differentiable due to δ(u2) = 2uδu = 0 at u = 0. Thus we have

δ IR = 〈(2R)u H(−u), δu〉. (35)

Since δ IR is given in the form of domain integration with respect to δu, (27) in the Euler–
Lagrange equations is modified to

L∗(û) + N ∗(ŝ) = αu

(
− ∂ Fu

∂u
+ ∇ · ∂ Fu

∂u1
− ∇∇ :

∂ Fu

∂u2

)
− (2R)u H(−u). (36)
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4. VARIATIONAL FORMULATIONS

4.1. The Optimality System of Equations

The variational method, which is briefly reviewed in Section 3, is now applied to the
optimization problem (1) with the equality constraints of (4), (5), (6), and (8). In the same
manner as in (13), the augmented objective function of Ia is given by

Ia = I + IS + ID + Iv + Iu, (37)

where

IS =
〈

Ŝ, D − 1

2
((∇v) + (∇v)T )

〉
, (38)

ID =
〈

D̂, S − 1

(1 + ν)
D − ν(D : E)

(1 + ν)(1 − 2ν)
E + β(u − 1)

(1 − 2ν)
E

〉
, (39)

Iv = 〈v̂, ∇ · S〉, (40)

Iu = 〈û, ∇2u〉. (41)

Here the definitions of inner products are modified as follows.

〈A, B〉 =
∫

�

A : B d�, 〈u, v〉 =
∫

�

u · v d�, (42)

where A and B are second-order tensors and u and v are vectors. The Lagrange multipliers,
Ŝ, D̂, v̂, and û, are introduced as the adjoint variables corresponding to the state variables
S, D, v, and u, respectively. From the optimality condition δ Ia = 0, we derive the system of
equations in the form of coupled PDEs. By applying (19) and (20) to (1) and (2), we have

δ I = αu

∫
�

δFu d� + αS

∫
�

δFS d� − αGδG,

= αu

〈
δu, −∂2u

∂r2
− ∂u

∂r

〉
+ αS

〈
δS, S − 1

3
(S : E)E

〉
+ αuδBn − αG

∫
�1

(n · ∇δu) d�,

where

δBn =
∫

�

n ·
(

2
∂u

∂r
er

)
δu d�. (43)

On the other hand, due to the linear properties of the differential operators in the thermal
stress problem, it is straightforward to derive each adjoint operator and to rearrange δ IS,
δ ID, δ Iv, δ Iu .

As explained in the previous section, by taking the variations to Ia with respect to adjoint
variables of Ŝ, D̂, v̂, û, we recover the state equations, given by

D = 1

2
((∇v) + (∇v)T ), (44)

S = 1

(1 + ν)
D + ν

(1 + ν)(1 − 2ν)
(D : E)E − β

(1 − 2ν)
(u − 1)E, (45)
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∇ · S = 0, (46)

∇2u = 0, (47)

By taking the variations to Ia with respect to state variables of S, D, v, u, we have the adjoint
equations, given by

D̂ = 1

2
((∇v̂) + (∇v̂)T ) − αS

(
S − 1

3
(S : E)E

)
, (48)

Ŝ = 1

1 + ν
D̂ + ν

(1 + ν)(1 − 2ν)
(D̂ : E)E, (49)

∇ · Ŝ = 0, (50)

∇2û + β

(1 − 2ν)
(D̂ : E) = 2αu

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
. (51)

The inequality constraint of u ≥ 0 can be imposed when we need to avoid the use of special
cooling equipment and reheating of the crystal from a practical point of view. Then, (51) is
modified to

∇2û + β

(1 − 2ν)
(D̂ : E) = 2αu

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
− (2R)u H(−u), (52)

where R is the penalty parameter with a large positive value and H is a unit Heaviside step
function defined by (33).

On the other hand, the natural boundary condition is given by

αuδBn − αGδG + Jv(δv, Ŝ) + JS(δS, v̂) + Ju(δu, û) = 0, (53)

where Jv, JS, Ju are the conjuncts corresponding to the differential operators in state equa-
tions, defined by

Jv(δv, Ŝ) =
∫

�

n · (Ŝ · δv) d�, (54)

JS(δS, v̂) =
∫

�

n · (δS · v̂) d�, (55)

Ju(δu, û) =
∫

�

n · (û∇δu − δu∇û) d�. (56)

By rearranging (53)–(56), we have

0 =
∫

�

n ·
(

2αu
∂u

∂r
er − ∇û

)
δu d� +

∫
�

n · (−α∗
G + û)∇(δu) d�

+
∫

�

(n · Ŝ · δv) d� +
∫

�

(n · δS · v̂) d�,

where

α∗
G =

{
αG on �1

0 on �2, �3, �4.



CZOCHRALSKI SINGLE-CRYSTAL GROWTH PROCESS 295

Since n · δS = 0 and δv = 0 along all boundaries, we have

n · Ŝ = 0 on �1, �2, �3. (57)

Also from the fact that δu = 0 on �1, �3 and δu = 0, n · ∇δu = 0 on �2, the boundary
conditions for û are given by

û = αG on �1, (58)

û = 0 on �2, �3, (59)

2αu
∂u

∂r
= ∂ û

∂r
on �3. (60)

As shown in (59), û already has the boundary condition of û = 0 on �3. Thus (60) seems in
surplus if it is viewed as a boundary condition for û. Thus if αu = 0, (60) can be taken as
a boundary condition for u on �3. But, if αu = 0, we encounter a difficulty. Equation (60)
in its form cannot be used as the boundary condition for u even though it should be a
key equation for obtaining the boundary condition of u on �3. This point is discussed in
Section 5.

4.2. Alternative Formulation of a System of Equations

In this subsection, we discuss a convenient formulation of a system of equations. Although
the system of (44)–(51) is natural, it is not convenient in handling. That is because it results
in a boundary-value problem on several unknown variables. Thus it is desirable to develop
an alternative formulation in which only a minimal number of variables appear in the
mathematical boundary-value problem, whereas the remainder are determined afterward
by direct calculation. Some detailed discussions are available in the literature [14]. In this
work, we consider the displacement formulation. By substituting and eliminating D, S, D̂,
and Ŝ, we have the optimality system of equations in the form of the second-order PDEs,
given by

∇2u = 0, (61)

∇2v + 1

(1 − 2ν)
∇(∇ · v) = 2β

(1 + ν)

(1 − 2ν)
∇u, (62)

∇2û + β

(1 − 2ν)
(∇ · v̂) = 2αu

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
− (2R)u H(−u), (63)

∇2v̂ + 1

(1 − 2ν)
∇(∇ · v̂) = 2αSβ

(1 − 2ν)
∇u − 2αS

3(1 − 2ν)
∇(∇ · v). (64)

The stress field and the adjoint stress field can be obtained by the direct calculation of

S = (∇v) + (∇v)T

2(1 + ν)
+ ν(∇ · v)E

(1 + ν)(1 − 2ν)
− β(u − 1)E

(1 − 2ν)
, (65)

Ŝ = (∇v̂) + (∇v̂)T

2(1 + ν)
+ ν(∇ · v̂)E

(1 + ν)(1 − 2ν)
− αS

(
S − 1

3 (S : E)E
)

(1 + ν)
. (66)
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The conditions of n · S = 0 and n · Ŝ = 0 at �1, �2, �3 are expressed in terms of v and
v̂ as

t n:
((∇v) + (∇v)T )

2
= 0, (67)

n n:
((∇v) + (∇v)T )

2
+ ν (∇ · v)

(1 − 2ν)
= β(u − 1)

(1 − 2ν)
, (68)

t n:
((∇v̂) + (∇v̂)T )

2
= 0, (69)

n n:
((∇v̂) + (∇v̂)T )

2
+ ν (∇ · v̂)

(1 − 2ν)
= αS(3β(u − 1) − (∇ · v))

3(1 − 2ν)
, (70)

where n and t denote the unit outward normal and the tangential vectors on the boundaries,
respectively. The boundary conditions at the symmetric axis (�4) are given by applying the
limiting condition of r → 0 to the governing equations (61)–(64). When the displacement
vector and adjoint displacement vector are represented in a cylindrical coordinate system
by v = vzez + vr er and v̂ = v̂zez + v̂r er , we have

�4 :
∂u

∂r
= ∂vz

∂r
= vr = ∂ û

∂r
= ∂v̂z

∂r
= v̂r = 0. (71)

On the other hand, the boundary conditions for u and û are summarized as

�1: u = 1, û = αG, (72)

�2: u = 0, û = 0, (73)

�3: 2αu
∂u

∂r
= ∂ û

∂r
, û = 0, (74)

�4:
∂u

∂r
= 0,

∂ û

∂r
= 0. (75)

As seen above, we have six coupled PDEs for three state variables u, vz, vr and three ad-
joint variables û, v̂z, v̂r . It is noteworthy that because the governing equations and the bound-
ary conditions for vz, vr , v̂z, v̂r are given in the differential form, we need additional gauge
conditions for the solution uniqueness. In this work, we introduce additional conditions of
vz = vr = v̂z = v̂r = 0 at the origin (z = r = 0). Physically, the displacement vector v plus
an arbitrary constant means rigid body motion, which does not influence the stress field.

At this point, a comment should be made about problem formulation. Readers may won-
der why not use the displacement formulation from the beginning with the state equations
(61) and (62). In such a case, the expressions of the objective function and boundary con-
ditions would be very complicated. Consequently a compact treatment such as that shown
in Section 4.1 may not be possible, which is why we started with the general expression for
the stress distribution, given by (4)–(6), then applied the displacement formulation later.

5. NUMERICAL IMPLEMENTATION

In order to solve the optimality system of equations in (61)–(64) with (67)–(75), we use
the finite-difference approximation. When we adopt the operator expressions, the coupling
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of unknowns in the differential equations and the boundary conditions may be expressed as

L(1)
(
x (1)

) = 0, B(1)
(
x (1), x (4)

) = 0,

L(2)
(
x (1), x (2), x (3)

) = 0, B(2)
(
x (1), x (2), x (3)

) = 0,

L(3)
(
x (1), x (2), x (3)

) = 0, B(3)
(
x (1), x (2), x (3)

) = 0,

L(4)
(
x (1), x (4), x (5), x (6)

) = 0, B(4)
(
x (4)

) = 0,

L(5)
(
x (1), x (2), x (3), x (5), x (6)

) = 0, B(5)
(
x (1), x (2), x (3), x (5), x (6)

) = 0,

L(6)
(
x (1), x (2), x (3), x (5), x (6)

) = 0, B(6)
(
x (1), x (2), x (3), x (5), x (6)

) = 0.

Here we set x (1) = u, x (2) = vz , x (3) = vr , x (4) = û, x (5) = v̂z , and x (6) = v̂r and L(i) and B(i)

denote the differential operators for the domain and boundary, respectively. Since the system
equations are linear, its discretized version is given in the matrix form of A · x = b. That is,



A11 0 0 A14 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

A41 0 0 A44 A45 A46

A51 A52 A53 0 A55 A56

A61 A62 A63 0 A65 A66







x (1)

x (2)

x (3)

x (4)

x (5)

x (6)




=




b(1)

b(2)

b(3)

b(4)

b(5)

b(6)




, (76)

where the coefficient matrix of A consists of local block matrices Ai j . It is noteworthy that
the global matrix A is of the full rank but it is sparse due to trivial off-diagonal matrices. In
fact, the existence of nontrivial off-diagonal matrices shows the degree of coupling in the
optimality system of equations.

A popular approach to solving A · x = b in (76) is direct solving methods such as the
Gaussian elimination. However, a direct solving method has some fatal weak points. If the
system is discretized by n in each direction, then the number of unknowns is n p, where p is
the dimension of the system, i.e., p = 1, 2, 3. Since we have three state variables and three
adjoint variables, the size of the unknown vector x is 6n p and thus A is a 6n p × 6n p matrix.
For example, in the case of n = 50 and p = 2, the global matrix A becomes a matrix about
15000 × 15000, which may be too huge to be handled by the Gaussian elimination. That is
why we want to develop an iterative numerical scheme for solving the optimality system
of equations.

In this work, we take advantage of the fact that diagonal block matrices Aii can be inverted
with relative ease because the differential equations in (61)–(64) are elliptic with respect to
u, v, û, and v̂, respectively. Based on this idea, we propose an iterative numerical algorithm
in the form of a block Jacobi method. First, we rearrange (76) in the form

A11x (1) = b̃(1) = b(1) − A14x (4), (77)

A22x (2) = b̃(2) = b(2) − A21x (1) − A23x (3), (78)

A33x (3) = b̃(3) = b(3) − A31x (1) − A32x (2), (79)

A44x (4) = b̃(4) = b(4) − A41x (1) − A45x (5) − A46x (6), (80)

A55x (5) = b̃(5) = b(5) − A51x (1) − A52x (2) − A53x (3) − A56x (6), (81)

A66x (6) = b̃(6) = b(6) − A61x (1) − A62x (2) − A63x (3) − A65x (5), (82)
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which leads to an iterative algorithm to find the unknown variable of x. It is summarized by

Step 1: Guess x (1), x (2), x (3), x (4), x (5), x (6).
Step 2: Solve (77)–(82) for x (1)–x (6), respectively.
Step 3: Check iterative convergence. If not converged, go back to Step 2.

Of course, different algorithms for iterative calculations such as the conjugate gradient
method and the successive overrelaxation method can be applied. However, it is noteworthy
that the iterative scheme based on the diagonal block matrices has some advantage. Each
block diagonal matrix is n p × n p. But if we use the alternating directional implicit scheme
and the second-order finite-difference approximations, we need to solve only (n × n) tridi-
agonal matrices even in three-dimensional problems. Thus, the size of the local coefficient
matrices Aii does not cause any difficulties. However, it should be stressed that the above
scheme works only when every diagonal block matrix has the full rank to be invertible.
Therefore, it is critical to check the condition for each diagonal matrix. This point is dis-
cussed again shortly along with the boundary condition.

The existence and uniqueness of the optimal solution is strongly influenced by math-
ematical properties of quadratic objective function. The objective function in this work
consists of three performance measures represented by their weighting parameters αu , αS,
αG . These three weighting parameters appear in the optimality system of equations (61)–
(64), (67)–(75), Among them, αG appears only at the boundary condition for û in (72). Since
the boundary condition of û = αG is of Dirichlet type, it can be seen that the weighting
parameter αG appears on the right-hand side of the discretized matrix equation, i.e., b(4) in
(76). In fact, when αG = 0, we can see that û and v̂ are trivial and u has a linear profile, as
is discussed later by investigating the limiting cases of αu → ∞ or αS → ∞.

Another weighting parameter αS appears in (64) and (70). Since (64) is an elliptic-type
differential equation with respect to v̂, αS plays the role of source or sink in the v̂-field.
Also αS in (70) provides a boundary source with respect to v̂. From the viewpoint of the
discretized matrix equation (76), αS appears at off-diagonal block matrices, i.e., A51, A52,
A53, A61, A62, A63, which represent the coupling of v̂ with u and v. Thus v̂ becomes trivial
in the case of αS = 0. Thereby, the full-rank properties of the diagonal block matrices, A55

and A66, are not deteriorated by the weighting parameter αS.
On the other hand, the third weighting parameter αu appears at (63) and (74). The effects

of αu in (63) are similar to those of αS in (64). It provides the coupling between u and û in
the system domain and appears in an off-diagonal block matrix A41 of (76). Therefore, we
can see that αu in (63) has no influence on the diagonal block matrices, like αS and αG . The
only exception arises in (74), i.e.,

2αu
∂u

∂r
= ∂ û

∂r
at r = 1. (83)

By using the backward difference scheme to second-order accuracy, the finite-difference
version of (83) is given by

2αu(3u|k − 4u|k−1 + u|k−2) = (3û|k − 4û|k−1 + û|k−2), (84)

where k is the data point index along the radial direction at r = 1. In terms of x (1) and x (4),
(84) forms the following local matrix equation together with other constraints for u:

A11x (1) + A14x (4) = b(1).
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It is noteworthy that A11 becomes deficient when αu is trivial. As emphasized previously, it is
critical that every diagonal matrix has the full-rank property for the iterative convergence.
Thus we need a remedy for the deficient A11 when αu = 0. In this work, we derive an
auxiliary boundary condition for the crystal surface temperature, which guarantees that A11

is of the full rank.
Consider αu = 0, αS = 0. For simplicity, we assume the penalty parameter R is equal to

zero. In the cylindrical coordinates, the normal and tangential directions at �3 are given by
n = er and t = ez , respectively. From the r -component of (70), we have

u = 1 + 1

3β
(∇ · v) + (1 − 2ν)

αSβ

(
∂v̂r

∂r
+ ν

(1 − 2ν)
(∇ · v̂)

)
. (85)

From (63) with û = ∂ û/∂r = 0 at r = 1 (see (74)), we have

(∇ · v̂) = − (1 − 2ν)

β

∂2û

∂r2
.

Thereby, we have

u = 1 + 1

3β
(∇ · v) + (1 − 2ν)

αSβ

(
∂v̂r

∂r
− ν

β

∂2û

∂r2

)
at r = 1. (86)

Therefore, when αu = 0, (86) can be used as the boundary condition for u on �3 instead of
(83) during the iterative computation.

6. RESULTS AND DISCUSSION

6.1. Physical Interpretation of the Weighting Parameters

In this work, the objective function is given by

Min. I = αu

∫
�

(
∂u

∂r

)2

d� + αS

∫
�

(
τvM

)2

d� − αG

∫
�1

(n · ∇u) d�.

As seen above, the objective function consists of three terms: (i) the term for the radial unifor-
mity of the temperature distribution, (ii) the term for the minimization of the von Mises stress
distribution, and (iii) the term for the single-crystal growth rate. The weighting parameters
of αu , αS, αG represent the relative importance of each term in the objective function. The
numerical values of αu , αS, αG should be selected by considering the practical implication.

In order to understand the physical meaning of the weighting parameters,we investigate
the limiting cases, where one of three parameters is extremely emphasized. By combining
the limiting cases together, we can imagine some general patterns of the optimal solution.
For simplicity, the inequality condition of u ≥ 0 is not considered. First, let us consider the
limiting case of αu → ∞. By taking the limit to the adjoint equation for û in (63), we have

∂2u

∂r2
+ 1

r

∂u

∂r
= 0 in �,

which provides ∂2u/∂z2 = 0 due to ∇2u = 0. From u|z=0 = 1 and u|z=l = 0, we obtain the
linear solution,

u = 1 − z/ l. (87)
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In evaluating the stress field caused by (87), it is more convenient to use the stress formulation
rather than the displacement formulation. As shown in Ref. [14], from Hooke’s law and the
force balance equation, we have the elliptic PDEs with respect to S, given by

(1 + ν)∇2S + ∇∇(S : E) + β

(
(1 + ν)

(1 − ν)
∇2u + ∇∇u

)
= 0.

As seen above, only the second and higher order derivatives of the temperature are respon-
sible for the generation of thermal stress. Thereby we have

lim
αu→∞ u = 1 − z

l
, lim

αu→∞ S = 0.

It is obvious that another limiting condition of αS → ∞ results in

lim
αS→∞ S = 0.

Therefore, we can see that in the case of extremely emphasizing either the radial uniformity
or the magnitude of the thermal stress, the optimal state is given by the linear temperature
profile and no thermal stress. On the other hand, the other limiting case of αG → ∞ is
different from the former cases. From the fact that the heat transfer rate at the crystal–melt
interface, i.e., −(∂u/∂z)z=0, monotonically increases as αG increases, we can see that there
is no smooth solution when αG → ∞. Consequently, in a normal situation, the optimal
solution is determined by the competition between the linear temperature profile and the
infinite axial temperature gradient at the interface.

The order of magnitude of each weighting parameter can be predicted based on the direct
calculations of the natural distributions of the variables such as in a simple conduction
problem. When the radiative heat transfer at the crystal surface is lumped in the form of
Newton’s law of cooling with a dimensionless number h (which is the Nusselt number in
heat transfer), the heat conduction problem can be handled analytically. Brice [15] derived
the series solutions for the heat conduction problem, which are consistent with experimental
measurements. He provided some useful single-term approximations to the series solution.
When h � 1 and z � l, the orders of magnitude of the dimensionless temperature and its
derivatives are given by

u ∼ (2 − hr)

(2 − h)
,

∂u

∂z
∼ −(2h)1/2,

(
∂u

∂r

)2

∼ h2

(2 − h)2
. (88)

By using these approximations, we can roughly predict O(αu/αG) when αS = 0. That is,

αu

αG
∼ −(∂u/∂z)

(∂u/∂r)2
. (89)

In the same way, O(αS/αG) can be predicted. Völkl [16] presented the relation between the
temperature conditions and maximum value of the shear stress, which provides the order
of magnitude estimation of the von Mises stress. That is,

τvM ∼ β

4(1 − ν)

∂u

∂r
. (90)



CZOCHRALSKI SINGLE-CRYSTAL GROWTH PROCESS 301

Thereby we have

αS

αG
∼ −(∂u/∂z)

(τvM)2
. (91)

By substituting ν = 0.25, β = 0.01, h � 1 into (88)–(91) in the silicon single-crystal
growth [4], we have rough estimates of the numerical values of αu , αS, αG , summarized by
the following.

If αS = 0,
αu

αG
� 100. (92)

If αu = 0,
αS

αG
� 105. (93)

When all of three parameters have nonzero values, at least one of the two conditions above
should be satisfied in order to obtain physically reasonable solutions.

6.2. Comparison with the Exact Solution for the Simple αS = 0 Case

When the objective function is given without any stress term, i.e., αS = 0 in (1), the
optimization problem can be formulated in terms of temperature only. In this case, the exact
solution is available. The exact solution can be used for verification of the optimal solution
obtained by numerical computations. In addition, the exact solution provides an idea for
solving the optimization problem in distributed parameter systems by using parametric
search methods, called nonlinear programming methods [17]. As is shown later, the finite
truncation of an infinite series of eigenfunctions results in the approximation of infinite
function space to finite vector space. Recently, Koh [18] attempted to derive an exact
solution in the series form as a part of his thesis, which is mainly related to the optimal
control of the point defects distribution in the CZ process. He applied the conjugate gradient
method to the discretized optimization problem. Main ideas for an exact solution are the
same, but we correct his mistakes in the Bessel function treatments. In this work, we use
the exact solution to verify our numerical algorithm, and the implementation results and the
strong points of the variational methods as an optimization techniques are briefly discussed.

Consider the optimization problem, given by

Min. I = αu

∫ l

0

∫ 1

0

(
∂u

∂r

)2

r dr dz + αG

∫ 1

0

(
∂u

∂z

∣∣∣∣
z=0

)
r dr,

subject to the governing equation of

∂2u

∂z2
+ ∂2u

∂r2
+ 1

r

∂u

∂r
= 0

and the boundary conditions of

u|z=0 = 1, u|z=l = 0,
∂u

∂r

∣∣∣∣
r=0

= 0, u|r=1 = us(z),

where us(z) denotes the unspecified distribution of the surface temperature. By using the
complete set of sine functions, we suppose

u = 1 − z

l
+

∞∑
n=1

An
I0(λnr)

I0(λn)
sin(λnz), (94)
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where I0 are the modified Bessel functions to zeroth order and the eigenvalues λn are given
by λn = πn/ l. Thereby, the unknown function u is represented by an infinite number of
the coefficients An . The derivatives of u are given by

∂u

∂r
=

∞∑
n=1

Anλn
I1(λnr)

I0(λn)
sin(λnz),

∂u

∂z
= −1

l
+

∞∑
n=1

Anλn
I0(λnr)

I0(λn)
cos(λnz).

Now that I is a function of An , the optimality conditions are given by ∂ I/An = 0 for
n = 1, 2, . . .∞. Thereby, we have

An = −αG

αu

I0(λn)

lλn

∫ 1
0 r I0(λnr) dr∫ 1
0 r I 2

1 (λnr) dr
.

By using the properties of the modified Bessel function, we obtain

An = −
(

αG

αu

)(
1

lλn

)
2I1(λn)I0(λn)

2I1(λn)I0(λn) − λn I 2
0 (λn) + λn I 2

1 (λn)
. (95)

Specific numerical values of An are shown in Fig. 2 when the aspect ratio is set by l = 5
and the weighting parameters are given by αu/αG = 10.

As mentioned previously, the representation of the optimal solution in the infinite series
form provides an idea for application of parametric search methods. That is, by using the
finite truncation of the infinite series, the crystal surface temperature can be approximated

FIG. 2. Optimal set of An in the infinite series solution.



CZOCHRALSKI SINGLE-CRYSTAL GROWTH PROCESS 303

by

us(z) = 1 − z

l
+

N∑
n=1

An sin

(
nπ

l
z

)
. (96)

Now that the optimization problem is given in terms of An , which consists of N -dimensional
vector space, various search method techniques are available. For example, the conjugate
direction method called Powell’s method and the golden section method are recommended
for predicting search direction and step size, respectively. In this paper, any further analysis
by the search methods is not performed due to space limitation, but the strong and weak
points are briefly compared between the search methods and variational methods.

In the search methods, we first solve the state equations by using the initial guess of
the control variables, such as An in (96). Then we substitute the computed values of state
variables into the objective function, which can be evaluated by numerical integration, such
as Gaussian quadrature. Now that we have an unconstrained optimization problem as a
function of An , we can apply the optimization techniques in N -dimensional space. Since
the objective function is not given in the quadratic form with respect to An , we need iterative
computations to obtain the optimal set of An . It is noteworthy that in the search method,
conventional PDE solution algorithms and optimization techniques are separately applied
to solve the state equations and the unconstrained optimization problem, respectively. This
advantage should not be taken lightly since many specialized and sophisticated algorithms
have been developed for solving them. However, the search method has a critical weak point
related to the computational load. In the search method, one iteration claims two different
kinds of numerical convergence: One is in solving the state equations in the form of PDEs
and the other is in finding the optimal set of An , where we need to compute I by numerical
integration. Thus the global computation in the search method needs considerable labor.
Also, it might be hard to obtain the fully converged solution due to the fluctuations in
numerical errors near the solution.

On the other hand, the variational methods adopted in this work have characteristics
opposite to the search methods. When the problem is simplified in terms of temperature
only, v̂ and Ŝ become trivial and v and S can be computed explicitly with u; then the
optimality system equations are given by

∂2u

∂z2
+ ∂2u

∂r2
+ 1

r

∂u

∂r
= 0,

∂2û

∂z2
+ ∂2û

∂r2
+ 1

r

∂ û

∂r
= 2αu

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
− 2Ru H(−u),

where the inequality constraint u ≥ 0 is added by the penalty term. The boundary conditions
are given by

u|z=0 = 1, ûz=0 = αG, u|z=l = û|z=l = 0,

∂u

∂r

∣∣∣∣
r=0

= ∂ û

∂r

∣∣∣∣
r=0

= 0, 2αu
∂u

∂r

∣∣∣∣
r=1

= ∂ û

∂r

∣∣∣∣
r=1

, û|r=1 = 0.

As shown above, the problem size doubles by using the adjoint variable û and this may be a
weak point of the variational approach. However, the numerical evaluation of the objective
function is not needed any more because the optimization problem is completely transformed
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to differential equations, coupled by means of weighting parameters. Therefore, we need
only a PDE solution algorithm, where u and û are updated by iterative computation. This
point is the most important advantage of the variational approach.

In fact, there are compromised methods between the above two methods. For example,
by using the quadratic approximation of the Lagrangian function, the optimization problem
can be solved via a series of subproblems which consist of a quadratic objective function
and linear constraints [17]. Here each subproblem can be easily handled by quadratic pro-
gramming techniques with the assumed value of adjoint variable, while the adjoint variable
is updated by using the Lagrangian necessary condition of the subproblem. Therefore, the
comparison stated above can be regarded as a comparison of two extreme cases of the pure
search method and the pure variational method. However, this fact does not significantly
change the discussion for the two extreme cases. The pure variational method has some
advantage for a certain class of problems in the sense that the numerical evaluation of the
objective function is not necessary. Furthermore, the problem of system size increasing
by a factor of two is not expected to cause big trouble in view of recent advancements
in memory size and computation speed. On the other hand, in the search methods, when
exact expressions for the gradient vector and Hessian matrix of the objective function are
not available, we have to solve PDEs and we need to perform numerical integrations and
numerical differentiations consecutively. These sequential computations may result in the
loss of solution accuracy.

In this work, the finite-difference method and the alternative directional iterative method
are used to solve the PDEs. The cylindrical crystal (0 ≤ z ≤ l, 0 ≤ r ≤ 1) is discretized by
z = i(l/m) and r = j (1/n) with m = 50, n = 20, and l = 5. The penalty function method
is used to reflect the technical constraint that the crystal temperature should not be below
a certain critical value. In fact, the penalty method for inequality constraints is common in
nonlinear programing techniques. However, it is known that the existence of the penalty
parameter may result in distortion of the contours of the objective function values. This fact
of distortion of contours is the major difficulty with the penalty functions, and thus much
effort has been put into developing rules for updating the penalty parameter to increase
overall efficiency [17]. On the other hand, in the pure variational approach, the penalty
function method does not seem to cause trouble. Numerical errors for u during the iter-
ative computations with different R are shown in Fig. 3a when αu = 1.0, αG = 0.1, and
αS = 0.0. The numerical errors are defined as the maximum value of the absolute differ-
ences between the values at the present iteration step and those at the previous iteration
step. From the figure, we can see that at least there is no bad effect of the penalty parameter
R on the solution convergence. Although some fluctuations occur during the iterations, the
total number of iterations for the converged solution to the tolerance of 10−8 decreases as R
increases. Figure 3b shows the crystal surface temperature profiles modified by the penalty
parameters. Excessive cooling near the interface for a high axial temperature gradient at
z = 0 may result in a supercooled region with a temperature below the ambient temperature,
i.e., u < 0. It is noteworthy that the axial temperature gradient at the crystal–melt interface
(z = 0) is kept almost constant although the global patterns of the optimal solutions are
definitely changed by the penalty parameter R. That is, the temperature distribution near
the interface is determined mainly by the ratio of the weighting parameters, αG/αu .

It is noteworthy that the penalty function method can be adopted to deal with the constraint
to repartition the horizontal section of the crystal, which means that the crystal thermal his-
tory, such as crystal cooling rate, is specified in the specific temperature range. In fact, it is
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FIG. 3. Results from the variational method with the penalty parameter R when αu = 1.0, αS = 0.0, αG = 0.1:
(a) numerical errors for u during the iterative computations; (b) the optimal surface temperature profiles.

crucial to understand the role of the thermal history of the growing single-crystal in order to
improve the crystal quality. Recently, Takano et al. [19] investigated the relationship between
grown-in defects and thermal history via direct computation of the temperature field and
the measurement of the grown-in defects. They suggested that a specific temperature range
exists for the annihilation of the defects. Also they showed that the densities of the defects
are strongly influenced by the cooling rate only in the specific temperature region, and their
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correlation becomes lower as the cooling rate increases. In our formula, it can be expressed
by

q1 ≤ |∇u| ≤ q2, for u1 ≤ u ≤ u2. (97)

For simplicity, consider |∇u| ∼ du/dz, then we have

u1 ≤ u ≤ u2, for z1 ≤ z ≤ z2, (98)

where z1 = z(u1) and z2 = z(u2). The inequality condition of (98) can be handled by the
penalty function method described by (30)–(36) in Section 3. In this case, (32) is modified by

IR = R
∫ z2

z1

[(u1 − u)2 H(u1 − u) + (u − u2)
2 H(u − u2)] dz. (99)

In this paper, any further analysis is not performed due to space limitation. The inequality
constraint to repartition the horizontal section of the crystal becomes more important in the
point defect problem, where the relative supersaturation of self-interstitials and vacancies
should be considered.

In Fig. 4, the effects of R on the contour profiles of the optimal solutions are shown for
the case of αu = 1.0, αG = 0.1, and αS = 0.0. From the figure, we can see that the order of
magnitude of O(R) = 10 is enough to avoid the supercooled region of u < 0. From the figure,
we can see that the adjoint variable û has a singularity at z = 0, r = 1 when αG is not trivial.
But the matter does not cause any problem in obtaining the converged solution by iterations.

FIG. 4. Effects of the penalty parameter R on the contour profiles of the optimal solutions for the case of
αu = 1.0, αS = 0.0, αG = 0.1: (a) R = 0.0; (b) R = 70.0. The difference between the adjacent contours is �u = 10−1,
�û = 2 × 10−2.
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FIG. 5. Prototype results of the optimal solutions when αS = 8 × 107, αu = 0.0, αG = 1.0, R = 0.0: (a) state
variables; (b) adjoint variables.

6.3. Effects of the Weighting Parameters on the Optimal Solutions

In this subsection, we investigate the effects of the weighting parameters on the optimal
solutions. Figure 5 shows a prototype of the results for the optimal solutions when αS =
8 × 107, αu = 0.0, αG = 1.0, R = 0.0. In the figures, the differences between the adjacent
contours are �u = �û = 10−1, �S = �Ŝ = 10−5, �v = �v̂ = 10−4. In the figure, the
variables have negative values in the gray regions. It is interesting that the adjoint variables
Ŝzz , Ŝrr , Ŝφφ , and Ŝr z have very similar spatial distribution with Szz , Srr , Sφφ , and Srz ,
respectively, as if they are mirror images of each other. This fact may result from the
similarities in the governing equations and the boundary conditions for S and Ŝ.

Figure 6 shows the contours of the optimal distributions of the temperature u and the von
Mises stress τvM for several values of αS when αu = 0.0, αG = 1.0, R = 0.0. That is, the
objective function is given by

I = αS

∫
�

(τvm)2 d� −
∫

�1

(n · ∇u) d�.
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FIG. 6. Effects of αS on the contour profiles of u and τvM for the case of αu = 0.0, αG = 1.0, R = 0.0:
(a) αS = 8 × 107; (b) αS = 10 × 107; (c) αS = 12 × 107.

In the figure, the differences between the adjacent contours �u and �τvM are 10−1 and
10−5, respectively. The maximum values for τvM are 1.7 × 10−4 (Fig. 6a), 1.4 × 10−4

(Fig. 6b), and 1.1 × 10−4 (Fig. 6c) at (z, r) = (2.5, 1.0). From the figure, we can see that
the supercooled region (u < 0) becomes broader as the weighting parameter αS decreases.
On the other hand, as the weighting parameter αS increases, the distributions of τvM become
more homogeneous and the maximum value, which occurs at the crystal surface, also
decreases. The von Mises stress at a certain point is a qualitative measure for the driving
force that induces dislocation, and thus the von Mises stress in the crystal phase should
be below a certain critical level, which depends on the material properties of the single
crystals. Figure 7 shows the effects of the weighting parameter αS on the optimal surface
temperature profiles when αu = 0.0, αG = 0.1, R = 0.0. In the figure, the slope of the axial
temperature gradient at the interface (z = 0) becomes smaller as the weighting parameter
αS increases. Since the crystal growth rate is directly proportional to the conductive heat
transfer at the interface, the crystal growth rate decreases as αS increases. In other words,
in order to reduce the thermal stress below a certain level, it is inevitable to maintain a low
crystal growth rate. But the crystal growth rate in each case can be maximized by realizing
the crystal surface such as the temperature distributions in Fig. 7.

Figure 8 shows the effects of αu on the surface temperature profiles when αS = 0.0,
αG = 1.0, R = 0.0. That is, the objective function is given by

I = αu

∫
�

(
∂u

∂r

)2

d� −
∫

�1

(n · ∇u) d�.
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FIG. 7. Effects of αS on the optimal profiles of the surface temperature when αu = 0.0, αG = 1.0, R = 0.0.

It is noteworthy that the effects of αu are very similar to those of αS. In fact, this similarity
between the effects of αS and αu is discussed in Section 5.1 by showing that the optimal
solutions are the same, i.e., u = 1 − z/ l in the limiting case of either αu → ∞ or αS →
∞. Consequently, we can see that the increase in radial uniformity of the temperature

FIG. 8. Effects of αu on the optimal profiles of the surface temperature when αS = 0.0, αG = 1.0, R = 0.0.



310 JEONG AND KANG

FIG. 9. Schematic for the practical implementation of the optimal solution: (a) a natural growing system
without any special equipment for heat transfer control at the crystal surface; (b) the system that can be inferred
from the optimal solution.

distribution implies the decrease of the von Mises stress. That is, the radial uniformity
of the temperature distribution can be considered an important measure of the thermal
stress distribution. This point agrees well with the efforts reported elsewhere. The system
configurations and the processing conditions are designed to lower the radial temperature
gradients in the crystal phase by using the auxiliary heater, the cold sink, and the thermal
shield around the crystal [1, 4].

Figure 9 shows schematic diagram for the practical implementations of the optimal
solution to the design of thermal surroundings, such as the thermal shield configuration or
heater/cooler positions. Now let us consider a natural growing system without any special
equipment for heat transfer control at the crystal surface for comparison with the system
that can be inferred from the optimal solution. For simplicity, the radiative heat transfer
at the crystal surface in the natural growing system is assumed to be lumped by a linear
relationship. That is,

−∂u

∂r
= hu at r = 1, (100)

where h denotes dimensionless heat transfer coefficient. Figure 9a shows the temperature
distribution in the natural growing system. The optimal temperature distribution is shown
in Fig. 9b for the case of αS = 108, αG = 1.0, and αu = R = 0.0.

In fact, it is not possible to prescribe the crystal surface temperature but the surface
temperature is determined by the result of heat transfer between the crystal and the ambient
surroundings, such as the hot furnace and the cold wall. Among the heat transfer modes
between the crystal surface and the heating elements, radiation is essential in the growth
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process due to the high melting temperature of most crystalline materials, and thus the
thermal shields can be applied to control the radiative heat transfer on the crystal surface.
Differently from thermal shields, the design of the auxiliary cooler plays an important role
in realizing the supercooled region. Also, an auxiliary heater should be provided together
with a cooler to replenish the crystal temperature up to the ambient temperature at the
top plate. In this way, the optimal solution obtained in this work may provide us with an
insight and with the fundamental information for optimal design by tuning up the thermal
shield configuration and the heater/cooler positions, which agree with the results reported
elsewhere [1, 3, 4]. It is noteworthy that the work done in this paper can be regarded
as part of the global problem, where the position and the power of the heating elements
can be a control function. By considering the radiative heat exchange at the crystal surface,
another subproblem can be formulated. As the solutions to the subproblem, the position and
the power of the heating elements are obtained to provide the crystal surface temperature
distribution obtained in this work. In forthcoming works, we will present the results for
the optimal thermal surrounding obtained by considering the heat exchanges between the
crystal surface and the heating elements.

7. CONCLUSIONS

The optimization of the crystal surface temperature distribution is performed for single-
crystal growth in the Czochralski process by considering both the crystalline defects and
the single-crystal growth rate. The calculus of variations and the method of Lagrange
multiplier is applied and the derived Euler-Lagrange equations are solved by the iterative
numerical scheme proposed in this work. Through this work, we have reached the following
conclusions.

(i) Based on the calculus of variations, an effective iterative numerical algorithm is
proposed for the optimization problem considered in the present work.

(ii) The optimal distributions of the crystal surface temperature obtained from this work
may provide an insight into the optimal design of thermal surroundings, such as thermal
shield configurations and heater/cooler positions. The optimal solutions agree qualitatively
well with previous design efforts reported elsewhere. Thus far, optimal design of processing
conditions and the system configurations has mostly been accomplished by the numerical
simulations case by case.

(iii) The variational methods in this work can be easily extended to more complicated
problems relevant to the Czochralski process, such as the point defect problem.
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